
Merging a Connection Scan Algorithm with a guided search in an industrial
setting

Arthur Finkelstein1 , Jean-Charles Régin2

1Instant System
2Université Côte d’Azur

arthur.finkelstein@instant-system.com, jean-charles.regin@univ-cotedazur.fr

Abstract
We present GDCSA an algorithm improving on
the Connection Scan Algorithm using goal directed
techniques for journey planning with multicriteria
range queries in public transit networks. We show
how GDCSA both answers the needs of the user
with a run time of less than a second on most net-
works and the needs of an industrial setting being
an easy, maintanable and adaptable algorithm.

1 Introduction
With the advent of smart-phones, millions of passengers use
computer-based journey planning systems to obtain public
transport directions. Those directions need to be given in a
reasonable amount of time and users do not want only the
shortest path from A to B but may want a journey with the
lowest walking distance, the least transfers, something in be-
tween or any number of combinations of criteria.

Multiple variants of the public transport routing problem
exist but one with a high practical relevance is the Pareto
range query problem (PRQP) because travelers do not want
to arrive significantly later than the earliest arrival time and
may have specific preferences on the number of transfers, the
walk distance or any other criteria. But while being of prac-
tical relevance, this variant is difficult to solve quickly which
is problematic because no user will wait more than a second
in front of a smart-phone.

The goal of this article is to show how we developed an
algorithm meeting the needs of real users while being inte-
grable in an industrial product.

Answering the needs of the users
Nowadays users want a system that responds perfectly to their
wants and needs. And tomorrow, the users will want even
more. This means fast and flexible algorithms that can solve
the PRQP.

Algorithms that yield fast query times for public transit
routing in large metropolitan networks are numerous, with
search based algorithms like the Connection Scan Algorithm
(CSA) [Dibbelt et al., 2018] or RAPTOR [Delling et al.,
2015], preprocessing based approaches with Transfer Pat-
terns [Bast et al., 2010; Bast and Storandt, 2014] or Trip-
Based Public Transit Routing [Witt, 2015].

Our users require a flexible algorithm as such preprocess-
ing based methods are off the table. Thus, we focus our inter-
est on search based methods because they are the fastest and
most flexible among the remaining methods. The two main
being the CSA and the RAPTOR.

Among search based methods, CSA based algorithms are
simple, short, easy to implement, expendable and have good
performances which make them often used in journey plan-
ning systems (e.g. Instant System on the Paris metropolitan
network, TrainLine on the European train network, ...). In
addition, the PRVCSA, the Pareto range query variant of the
CSA, seems to be one of the faster algorithm to solve the
PRQP as mentionned in multiple well-known articles [Bast
et al., 2016; Dibbelt et al., 2018]. Therefore with regards to
the needs of the users, CSA based algorithms are the solution.

Answering the needs of an industrial setting
We can identify multiple problems when integrating an algo-
rithm in an industrial setting : the accuracy of the data, the
maintainability and adaptability of the algorithm and the in-
tegration into an existing system.

The problem when using public transport journey planning
systems on metropolitan data is that the data is never 100%
accurate, we can have multiple problems ranging from lines
that have not been updated with the new stops and departure
times and any number of other problems. As such an algo-
rithm that is robust to inaccurate data is essential.

With inaccurate data and real life usage, we have a lot of
bug fixing and in a small company like ours with 30 employ-
ees, any one of the R&D engineers should be able to debug
the core of the journey planning because a debug task is as-
signed independently of who wrote the code. This means that
an algorithm that is easy to code and understand is vital.

An easily adaptable algorithm is important because each
client has different needs, depending on the size of the pub-
lic transport network, the wish of the community and other
factors. This leads to an algorithm that has to be easily mod-
ifiable to allow the output, input or core to be tailor-made for
each client. For example certain clients want to use the GPS
position of the user as departure or arrival instead of stops,
or combining free floating bikes or kick-scooters with public
transport which means journeys to or from other modes will
have specific constraints.

A complete app containing other components, such as tick-



eting, next departure times, favorite notification, guiding,
transport on demand and more, involves more complex data
structures than the ones described in the literature. For ex-
ample simple identifiers are used for benchmarking whereas
they are more complex in an app to be human readable. So
access times to the data structures are longer and therefore the
run time is slower. We also have the problem of persistence
and the need for databases which limit access times, and when
connecting to real time providers the correspondence between
the line and stop ids is never automatic.

Our solution
Our solution to those constraints is the Goal-Directed CSA
(GDCSA), that combines goal-directed techniques with a
PRVCSA to solve the PRQP. Other algorithms can’t meet all
those needs, RAPTOR is a mildly more complex algorithm,
with specific data structures and slower response times for the
PRQP, and CSAccel is a complex algorithms with no variant
for the PRQP.

2 Goal-Directed Connection Scan Algorithm
The GDCSA shares the same goals as the CSA, a simple and
efficient code. We want an algorithm that is easy to imple-
ment and to understand, while improving run time for the
PRQP on dense metropolitan networks.

The main idea is to partition the graph of stops into areas,
in a roughly geographical manner, to avoid scanning connec-
tions that will only take us away from the target. By using
upper and lower bounds on the duration between stops and
more specifically between areas, we only use a sub-set of the
areas to solve the PRQP.

The algorithm used to partition the graph is the Inertial
Flow [Schild and Sommer, 2015], a recursive algorithm that
cuts a set of nodes in two subsets by computing the min-cut,
with a flow algorithm, and then the same method is called for
each subset. The stopping conditions are either a maximum
depth or a minimum size of nodes in a subset.

Then a lower bound is computed between every pair of ar-
eas, it is the journey with the minimum duration over all the
journeys of the day that connects the boundaries of both ar-
eas. The lower bounds can be computed once and for all in a
preprocessing which can be parallelized.

The GDCSA works in four phases :
The first computes the upper bound using an earliest ar-

rival CSA, using the maximum arrival time τt as defined in
[Dibbelt et al., 2018]. The upper bound we use is the time
span to satisfy a journey request : dPT (s, t, τs) = τt − τs =
τs + 2 · (x− τs)− τs = 2 · (x− τs).

The second iterates over each area to only keep the ones
that will be useful to the journey planning by using a simple
inequality between upper and lower bounds : dPT (s, a) +

dPT (a, t) ≤ dPT (s, t, τs) where a is an area.
The third will merge all the connections from the chosen

areas and sort them.
The last will launch a PRVCSA using only the sorted con-

nections of the opened areas.
More details on the algorithm can be found in [Finkelstein

and Régin, 2020].

3 Experiments
We experimentally evaluate the GDCSA and compare it to
the PRVCSA with 4 criteria: maximizing the departure time,
minimizing the arrival time, minimizing the number of trans-
fers and minimizing the walked distance.

Our test instances are based on the data of the public tran-
sit network of 3 cities (Paris, Berlin and Stockholm) and 2
country wide train networks (Germany and Switzerland), the
data is openly available via a GTFS feed (https://transitfeeds.
com/) which has been downloaded in October 2019.

The number of connections and stops for each network is
seen in the table below. We can see that the city wide net-
work range from big with Paris, to smaller with Stockholm,
the goal of those public transit network is to show the per-
formances of the GDCSA on dense networks. Whereas the
country wide train networks show the performances on sparse
networks.

The footpaths were given in the GTFS feed but the graph
was not transitively closed, we then programmatically gener-
ated the missing ones.

Our experiments were conducted on a Intel Core i7-
7700HQ processor with 16 GB of RAM.

In our evaluation, we ran for each variant of the algorithm
the same set of 1000 queries generated randomly. The source
and target stops are chosen uniformly at random. The depar-
ture time is picked uniformly at random within the day.

The GDCSA uses an inertial flow partitioning with a max-
imum depth of 12.

Instance # Conn. # Stops Algorithm Time [ms]

Paris 3209401 44534 PRVCSA 7858
GDCSA 2981

Berlin 1379755 28651 PRVCSA 1383
GDCSA 338

Stockholm 703326 14258 PRVCSA 847
GDCSA 89

Germany 3601420 74398 PRVCSA 2587
GDCSA 529

Switzerland 2599675 29844 PRVCSA 1289
GDCSA 147

We can see that the run time of the GDCSA is 2.5 to 9 times
faster than the PRVCSA and is mostly under the one second
limit dictated by the users. The run times for the smaller net-
works have a greater gain from the GDCSA, whereas the big-
ger network the lower the gains are.

4 Conclusion
The idea is promising with an easy to code algorithm, us-
ing as a center piece a PRVCSA, while boasting good per-
formances on dense metropolitan networks as well as sparse
country wide networks.

The results on the Paris metropolitan network are still a
bit underwhelming but we are positive that using better ma-
chines, optimizing the code and maybe parallelizing some
tasks could help us reach our goal.

https://transitfeeds.com/
https://transitfeeds.com/


References
[Bast and Storandt, 2014] Hannah Bast and Sabine Storandt.

Frequency-based search for public transit. In Proceedings
of the 22nd ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pages
13–22, 2014.

[Bast et al., 2010] Hannah Bast, Erik Carlsson, Arno Eigen-
willig, Robert Geisberger, Chris Harrelson, Veselin Ray-
chev, and Fabien Viger. Fast routing in very large public
transportation networks using transfer patterns. In Euro-
pean Symposium on Algorithms, pages 290–301. Springer,
2010.

[Bast et al., 2016] Hannah Bast, Daniel Delling, Andrew
Goldberg, Matthias Müller-Hannemann, Thomas Pajor,
Peter Sanders, Dorothea Wagner, and Renato F Werneck.
Route planning in transportation networks. In Algorithm
engineering, pages 19–80. Springer, 2016.

[Delling et al., 2015] Daniel Delling, Thomas Pajor, and Re-
nato F Werneck. Round-based public transit routing.
Transportation Science, 49(3):591–604, 2015.

[Dibbelt et al., 2018] Julian Dibbelt, Thomas Pajor, Ben
Strasser, and Dorothea Wagner. Connection scan algo-
rithm. Journal of Experimental Algorithmics (JEA), 23:1–
56, 2018.

[Finkelstein and Régin, 2020] Arthur Finkelstein and
Jean-Charles Régin. Goal directed techniques meet
connection scan algorithm. https://drive.google.com/file/
d/10vQd7AP8oipNJazpWsADinNKSq7QDavn/view?
usp=sharing, 2020.

[Schild and Sommer, 2015] Aaron Schild and Christian
Sommer. On balanced separators in road networks. In
International Symposium on Experimental Algorithms,
pages 286–297. Springer, 2015.

[Witt, 2015] Sascha Witt. Trip-based public transit rout-
ing. In Algorithms-ESA 2015, pages 1025–1036. Springer,
2015.

https://drive.google.com/file/d/10vQd7AP8oipNJazpWsADinNKSq7QDavn/view?usp=sharing
https://drive.google.com/file/d/10vQd7AP8oipNJazpWsADinNKSq7QDavn/view?usp=sharing
https://drive.google.com/file/d/10vQd7AP8oipNJazpWsADinNKSq7QDavn/view?usp=sharing

	Introduction
	Goal-Directed Connection Scan Algorithm
	Experiments
	Conclusion

